3 years ago
Origins of Small Proton Chemical Shift Differences in Monodeuterated Methyl Groups

Lynda J. Brown, Sebastian Cevallos, Stuart J. Elliott, Stuart Sawyer, O. Maduka Ogba, Daniel J. O’Leary, Malcolm H. Levitt, David A. Kolin
We have recently shown that the small proton chemical shift difference in 2-methyl-1-(methyl-d)piperidine supports a long-lived nuclear spin state. To identify additional candidate molecules with CH2D groups exhibiting accessible long-lived states, and to investigate the factors governing the magnitude of the shift differences, we report a computational and experimental investigation of methyl rotational equilibria and proton chemical shifts in a variety of 2-substituted 1-(methyl-d)piperidines. The polarity and size of the 2-substituent affect the 1,2-stereoisomeric relationship, and consequently, the strength of the rotational asymmetry within the CH2D group. Nonpolar and large 2-substituents prefer the equatorial position, and relatively large shift differences (i.e., > 13 ppb) are observed. Polar and small substituents, however, increasingly prefer the axial position, and medium to small shift differences (i.e., 0 to 9 ppb) are observed. In addition, the diastereotopic CH2D proton chemical shift difference for tricarbonyl(1-chloro-2-deuteriomethylbenzene) chromium(0) was computed, showing that reasonable predictions of these small shift differences can be extended to more complex, organometallic species.
Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b01356
DOI: 10.1021/acs.joc.7b01356
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.