3 years ago

Equivalences between learning of data and probability distributions, and their applications.

Nan Fang, Frank Stephan, George Barmpalias

Algorithmic learning theory traditionally studies the learnability of effective infinite binary sequences (reals), while recent work by [Vitanyi and Chater, 2017] and [Bienvenu et al., 2014] has adapted this framework to the study of learnability of effective probability distributions from random data. We prove that for certain families of probability measures that are parametrized by reals, learnability of a subclass of probability measures is equivalent to learnability of the class of the corresponding real parameters. This equivalence allows to transfer results from classical algorithmic theory to learning theory of probability measures. We present a number of such applications, providing many new results regarding EX and BC learnability of classes of measures, thus drawing parallels between the two learning theories.

Publisher URL: http://arxiv.org/abs/1801.02566

DOI: arXiv:1801.02566v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.