3 years ago

Reverse Ostwald process in active fluids: Cluster and bubble phases.

Cesare Nardini, Michael E. Cates, Elsen Tjhung

It is known that repulsive self-propelled colloids can undergo liquid-vapor phase separation. In simulations and experiments, more complex steady-state are seen: a dynamic population of dense clusters in a sea of vapor, or dilute bubbles in a liquid. Here we show that this phenomenology emerges generically when we extend the {\phi}4 field theory of passive phase separation to locally break detailed balance. The required active terms, which we show to arise by coarse-graining of microscopic models, can reverse the classical Ostwald process that normally drives bulk phase separation.

Publisher URL: http://arxiv.org/abs/1801.07687

DOI: arXiv:1801.07687v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.