3 years ago

Magnetic Seed and Cosmology as Quantum Hall Effect.

F. Mendez, P. Gondolo, H. Falomir, J. Gamboa

In the framework of a bimetric model, we discuss a relation between the (modified) Friedmann equations and a mechanical system similar to the quantum Hall effect problem. Firstly, we show how these modified Friedmann equations are mapped to an anisotropic two-dimensional charged harmonic oscillator in the presence of a constant magnetic field, with the frequencies of the oscillator playing the role of the cosmological constants. This problem has two energy scales leading to the identification of two different regimes, namely, one dominated by the cosmological constants, with exponential expansions for the scale factors, and the other dominated by a magnetic seed, which would be responsible for both a component of dark energy and a primordial magnetic field. The latter regime would be described by a (nonperturbative) mapping between the cosmological evolution and the quantum Hall effect.

Publisher URL: http://arxiv.org/abs/1801.07575

DOI: arXiv:1801.07575v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.