3 years ago

Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev Model.

Jacobus J. M. Verbaarschot, Antonio M. García-García, Yiyang Jia

We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, $N$ Majorana fermions with infinite range interactions in $0+1$ dimensions. We have found that, close to the ground state $E \approx 0$, discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite $N$, which we compute analytically and numerically, grows exponentially with $N$ for $E \approx 0$. However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above $E \approx 0$, the spectral density grows exponential with the energy. Deep in the quantum regime, corresponding to the first $O(N)$ eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for $E \approx 0$ is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalues separations smaller than the Thouless energy, which seems to scale linearly with $N$. Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universality characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor $g(t)$, obtained from the connected two-level correlation function of the unfolded spectrum, decays as $1/t^2$ for times shorter but comparable to the Thouless time with $g(0)$ related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

Publisher URL: http://arxiv.org/abs/1801.01071

DOI: arXiv:1801.01071v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.