3 years ago

Dynamic characterization of cellulose nanofibrils in sheared and extended semi-dilute dispersions.

Peng Zhang, Nitesh Mittal, Stephan V. Roth, Fredrik Lundell, L. Daniel Söderberg, Tomas Rosén

New materials made through controlled assembly of dispersed cellulose nanofibrils (CNF) has the potential to develop into biobased competitors to some of the highest performing materials today. The performance of these new cellulose materials depends on how easily CNF alignment can be controlled with hydrodynamic forces, which are always in competition with a different process driving the system towards isotropy, called rotary diffusion. In this work, we present a flow-stop experiment using polarized optical microscopy (POM) to study the rotary diffusion of CNF dispersions in process relevant flows and concentrations. This is combined with small angle X-ray scattering (SAXS) experiments to analyze the true orientation distribution function (ODF) of the flowing fibrils. It is found that the rotary diffusion process of CNF occurs at multiple time scales, where the fastest scale seems to be dependent on the deformation history of the dispersion before the stop. At the same time, the hypothesis that rotary diffusion is dependent on the initial ODF does not hold as the same distribution can result in different diffusion time scales. The rotary diffusion is found to be faster in flows dominated by shear compared to pure extensional flows. Furthermore, the experimental setup can be used to quickly characterize the dynamic properties of flowing CNF and thus aid in determining the quality of the dispersion and its usability in material processes.

Publisher URL: http://arxiv.org/abs/1801.07558

DOI: arXiv:1801.07558v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.