3 years ago

Large-scale messengers from arbitrary spin fields.

Mohamed M. Anber

We show that nonperturbative production of arbitrary spin fields from vacuum will accompany the generation of non-vanishing macroscopic energy-momentum tensor correlators. This argument is based on the general causal field formalism, which gives a manifestly covariant description of higher spin particles without any reference to gauge redundancy. Our findings are direct consequence of the Poincar\'e covariance and anlayticity of the Green's functions and independent of any detailed particle physics model. Further, we discuss the idea that any mechanism causing imbalance between the on-shell production of left- and right-handed fields leads to a helical structure in the energy momentum correlators and violation of the macroscopic parity symmetry. We check our method for fields with spin $\frac{1}{2}$ and show that it correctly reproduces previous results. However, the formalism suffers from pathologies related to non-localities that appear for massless particles with spin $\geq 1$ in flat space. We discuss the origin of these pathologies and the relevance of our findings to cosmology.

Publisher URL: http://arxiv.org/abs/1801.07349

DOI: arXiv:1801.07349v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.