3 years ago

Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers.

Tyler S Harmon, Marc I Diamond, Scott L Crick, Aimin Li, Rohit V Pappu, Kiersten M Ruff, Ammon E Posey
Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We find that monomers and oligomers make up the soluble M-phase, ~25 nm spheres dominate in the soluble S-phase, and long, linear fibrils make up the insoluble F-phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.

Publisher URL: http://doi.org/10.1074/jbc.RA117.000357

DOI: 10.1074/jbc.RA117.000357

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.