3 years ago

Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria.

Ana J García-Sáez, Coline Prévost, Kushal Kumar Das, Patricia Bassereau, Begoña Ugarte-Uribe
Drp1, an 80-kDa mechanochemical GTPase of the dynamin superfamily, is required for mitochondrial division in mammals. Despite the role of Drp1 dysfunction in human disease, its molecular mechanism remains poorly understood. Here, we examined the effect of Drp1 as a minimal machinery on membrane curvature using tubes pulled from GUVs. We found that GTP promoted rapid rearrangement of Drp1 from a uniform distribution to discrete foci, in line with the assembly of Drp1 scaffolds at multiple nucleation sites around the lipid tube. Polymerized Drp1 preserved the membrane tube below the protein coat also in the absence of pulling forces, but did not induce spontaneous membrane fission. Strikingly, Drp1 polymers stabilized membrane curvatures similar to those of constricted mitochondria against pressure changes. Our findings support a new model for mitochondrial division where Drp1 mainly acts as a scaffold for membrane curvature stabilization, which sets it apart from other dynamin homologs.

Publisher URL: http://doi.org/10.1242/jcs.208603

DOI: 10.1242/jcs.208603

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.