5 years ago

High operating temperature in V-based superconducting quantum interference proximity transistors

Francesco Giazotto, Giampiero Marchegiani, Nadia Ligato, Elia Strambini, Pauli Virtanen
Here we report the fabrication and characterization of fully superconducting quantum interference proximity transistors (SQUIPTs) based on the implementation of vanadium (V) in the superconducting loop. At low temperature, the devices show high flux-to-voltage (up to 0.52 mV/Φ0) and flux-to-current (above 12 nA/Φ0) transfer functions, with the best estimated flux sensitivity ~ 2.6 μΦ0/(Hz)1/2 reached under fixed voltage bias, where Φ0 is the flux quantum. The interferometers operate up to Tbath 2 K, with an improvement of 70% of the maximal operating temperature with respect to early SQUIPTs design. The main features of the V-based SQUIPT are described within a simplified theoretical model. Our results open the way to the realization of SQUIPTs that take advantage of the use of higher-gap superconductors for ultra-sensitive nanoscale applications that operate at temperatures well above 1 K.

Publisher URL: https://www.nature.com/articles/s41598-017-09036-0

DOI: 10.1038/s41598-017-09036-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.