3 years ago

Microkinetic Model for Oxygen Interstitial Injection from the ZnO(0001) Surface into the Bulk

Microkinetic Model for Oxygen Interstitial Injection
from the ZnO(0001) Surface into the Bulk
Ming Li, Edmund G. Seebauer
Semiconductor surfaces provide efficient pathways for injecting native point defects into the underlying bulk. The present work constructs a quantitative microkinetic model for the injection of oxygen interstitial atoms from the polar Zn-terminated ZnO(0001) surface into the bulk. Rate constants for defect interaction with the surface and in the bulk were determined by a global optimization procedure of simulations fitted to self-diffusion profiles from isotopic gas–solid exchange experiments. Key activation barriers are 2.0 eV for injection, 0.62 eV for hopping diffusion, and 1.6 eV for lattice exchange. The injection barrier does not differ greatly from that for nonpolar TiO2(110), but the coverage of injectable oxygen increases with temperature, in contrast to the behavior of TiO2 and gas adsorption in general.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09962

DOI: 10.1021/acs.jpcc.7b09962

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.