3 years ago

Oxygen-Vacancy-Mediated Exciton Dissociation in BiOBr for Boosting Charge-Carrier-Involved Molecular Oxygen Activation

Oxygen-Vacancy-Mediated
Exciton Dissociation in BiOBr
for Boosting Charge-Carrier-Involved Molecular Oxygen Activation
Qun Zhang, Shenlong Jiang, Yi Xie, Wei Shao, Xiaodong Zhang, Hui Wang, Dingyu Yong, Bicai Pan, Shichuan Chen, Wensheng Yan
Excitonic effects mediated by Coulomb interactions between photogenerated electrons and holes play crucial roles in photoinduced processes of semiconductors. In terms of photocatalysis, however, efforts have seldom been devoted to the relevant aspects. For the catalysts with giant excitonic effects, the coexisting, competitive exciton generation serves as a key obstacle to the yield of free charge carriers, and hence, transformation of excitons into free carriers would be beneficial for optimizing the charge-carrier-involved photocatalytic processes. Herein, by taking bismuth oxybromide (BiOBr) as a prototypical model system, we demonstrate that excitons can be effectively dissociated into charge carriers with the incorporation of oxygen vacancy, leading to excellent performances in charge-carrier-involved photocatalytic reactions such as superoxide generation and selective organic syntheses under visible-light illumination. This work not only establishes an in-depth understanding of defective structures in photocatalysts but also paves the way for excitonic regulation via defect engineering.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b10997

DOI: 10.1021/jacs.7b10997

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.