3 years ago

Novel Approach for Fabricating Transparent and Conducting SWCNTs/ITO Thin Films for Optoelectronic Applications

Novel Approach for Fabricating Transparent and Conducting
SWCNTs/ITO Thin Films for Optoelectronic Applications
Geoffrey Trotter, Hatem Taha, Xiaoli Zhao, Amun Amri, Chun-Yang Yin, Zhong-Tao Jiang, David J. Henry
Single-walled carbon nanotubes (SWCNTs) incorporated in indium tin oxide (ITO) were developed to fabricate transparent conductive thin films via a sol–gel spin coating technique. The fabricated thin films were annealed at 350 °C. The effects of incorporating SWCNTs and varying film thickness on crystal structure were systematically investigated by X-ray diffraction (XRD), Raman shift, surface elemental compositions, surface topography and roughness, optoelectronic characteristics, and mechanical properties. XRD results confirmed the body-centered cubic structure of indium oxide polycrystalline phase, indicating that the structural properties of the ITO films were not significantly altered by incorporating CNTs. The presence of CNTs in the ITO matrix was confirmed by analyses of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDX). FESEM images revealed the formation of SWCNTs/ITO nanoparticles, and the average crystallite size increased along with increasing film thickness. Electrical characteristics also improved as the film thickness increased. The lowest electrical resistivity (4.6 × 10–4 Ω cm), as well as the highest carrier concentration (3.3 × 1020 cm–3) and carrier mobility (41 cm2/V s) were achieved from the 320 nm thick film. However, the optical transparency decreased from 91 to 87.5% as the film thickness increased from 150 to 320 nm. The hardness and Young’s modulus of the prepared samples improved, with the increase of SWCNTs doping level, and achieved the maximum values of 28 and 306 GPa, respectively.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b10977

DOI: 10.1021/acs.jpcc.7b10977

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.