3 years ago

Interaction Energy Landscapes of Aromatic Heterocycles through a Reliable yet Affordable Computational Approach

Interaction Energy Landscapes of Aromatic Heterocycles
through a Reliable yet Affordable Computational Approach
Ivo Cacelli, Leandro Greff Da Silveira, Matheus Jacobs, Paolo Roberto Livotto, Giacomo Prampolini
Noncovalent interactions between homodimers of several aromatic heterocycles (pyrrole, furan, thiophene, pyridine, pyridazine, pyrimidine, and pyrazine) are investigated at the ab initio level, employing the Möller–Plesset second-order perturbation theory, coupled with small Gaussian basis sets (6-31G* and 6-31G**) with specifically tuned polarization exponents. The latter are modified using a systematic and automated procedure, the MP2mod approach, based on a comparison with high level CCSD(T) calculations extrapolated to a complete basis set. The MP2mod results achieved with the modified 6-31G** basis set show an excellent agreement with CCSD(T)/CBS reference energies, with a standard deviation less than 0.3 kcal/mol. Exploiting its low computational cost, the MP2mod approach is then used to explore sections of the intermolecular energy of the considered homodimers, with the aim of rationalizing the results. It is found that the direct electrostatic interaction between the monomers electron clouds is at the origin of some observed features, and in many cases multipoles higher than dipole play a relevant role, although often the interplay with other contributions to the noncovalent forces (as for instance induction, π–π or XH-π interactions) makes a simple rationalization rather difficult.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00602

DOI: 10.1021/acs.jctc.7b00602

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.