3 years ago

An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery

An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery
This paper presents an electrochemical-thermal coupled overcharge-to-thermal-runaway (TR) model to predict the highly interactive electrochemical and thermal behaviors of lithium ion battery under the overcharge conditions. In this model, the battery voltage equals the difference between the cathode potential and the anode potential, whereas the temperature is predicted by modeling the combined heat generations, including joule heat, thermal runaway reactions and internal short circuit. The model can fit well with the adiabatic overcharge tests results at 0.33C, 0.5C and 1C, indicating a good capture of the overcharge-to-TR mechanism. The modeling analysis based on the validated model helps to quantify the heat generation rates of each heat sources during the overcharge-to-TR process. And the two thermal runaway reactions including the electrolyte oxidation reaction and the reaction between deposited lithium and electrolyte are found to contribute most to the heat generations during the overcharge process. Further modeling analysis on the critical parameters is performed to find possible solutions for the overcharge problem of lithium ion battery. The result shows that increasing the oxidation potential of the electrolyte, and increasing the onset temperature of thermal runaway are the two effective ways to improve the overcharge performance of lithium ion battery.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310595

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.