3 years ago

Intrinsic dimension of concept lattices.

Gerd Stumme, Tom Hanika, Friedrich Martin Schneider

Geometric analysis is a very capable theory to understand the influence of the high dimensionality of the input data in machine learning (ML) and knowledge discovery (KD). With our approach we can assess how far the application of a specific KD/ML-algorithm to a concrete data set is prone to the curse of dimensionality. To this end we extend V.~Pestov's axiomatic approach to the instrinsic dimension of data sets, based on the seminal work by M.~Gromov on concentration phenomena, and provide an adaptable and computationally feasible model for studying observable geometric invariants associated to features that are natural to both the data and the learning procedure. In detail, we investigate data represented by formal contexts and give first theoretical as well as experimental insights into the intrinsic dimension of a concept lattice. Because of the correspondence between formal concepts and maximal cliques in graphs, applications to social network analysis are at hand.

Publisher URL: http://arxiv.org/abs/1801.07985

DOI: arXiv:1801.07985v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.