3 years ago

Training Set Debugging Using Trusted Items.

Xiaojin Zhu, Xuezhou Zhang, Stephen J. Wright

Training set bugs are flaws in the data that adversely affect machine learning. The training set is usually too large for man- ual inspection, but one may have the resources to verify a few trusted items. The set of trusted items may not by itself be adequate for learning, so we propose an algorithm that uses these items to identify bugs in the training set and thus im- proves learning. Specifically, our approach seeks the smallest set of changes to the training set labels such that the model learned from this corrected training set predicts labels of the trusted items correctly. We flag the items whose labels are changed as potential bugs, whose labels can be checked for veracity by human experts. To find the bugs in this way is a challenging combinatorial bilevel optimization problem, but it can be relaxed into a continuous optimization problem. Ex- periments on toy and real data demonstrate that our approach can identify training set bugs effectively and suggest appro- priate changes to the labels. Our algorithm is a step toward trustworthy machine learning.

Publisher URL: http://arxiv.org/abs/1801.08019

DOI: arXiv:1801.08019v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.