3 years ago

A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees.

Peter Robinson, Gopal Pandurangan, Michele Scquizzato

This paper presents a randomized Las Vegas distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in $\tilde{O}(D + \sqrt{n})$ time and exchanges $\tilde{O}(m)$ messages (both with high probability), where $n$ is the number of nodes of the network, $D$ is the diameter, and $m$ is the number of edges. This is the first distributed MST algorithm that matches \emph{simultaneously} the time lower bound of $\tilde{\Omega}(D + \sqrt{n})$ [Elkin, SIAM J. Comput. 2006] and the message lower bound of $\Omega(m)$ [Kutten et al., J.ACM 2015] (which both apply to randomized algorithms).

The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower bound construction that shows one lower bound {\em does not} work for the other. To complement our algorithm, we present a new lower bound graph construction for which any distributed MST algorithm requires \emph{both} $\tilde{\Omega}(D + \sqrt{n})$ rounds and $\Omega(m)$ messages.

Publisher URL: http://arxiv.org/abs/1607.06883

DOI: arXiv:1607.06883v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.