3 years ago

Ergodicity of some classes of cellular automata subject to noise.

Siamak Taati, Mathieu Sablik, Irène Marcovici

Cellular automata (CA) are dynamical systems on symbolic configurations on the lattice. They are also used as models of massively parallel computers. As dynamical systems, one would like to understand the effect of small random perturbations on the dynamics of CA. As models of computation, they can be used to study the reliability of computation against noise.

We consider various families of CA (nilpotent, permutive, gliders, CA with a spreading symbol, surjective, algebraic) and prove that they are highly unstable against noise, meaning that they forget their initial conditions under slightest positive noise. This is manifested as the ergodicity of the resulting probabilistic CA. The proofs involve a collection of different techniques (couplings, entropy, Fourier analysis), depending on the dynamical properties of the underlying deterministic CA and the type of noise.

Publisher URL: http://arxiv.org/abs/1712.05500

DOI: arXiv:1712.05500v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.