3 years ago

Learning Representations from Road Network for End-to-End Urban Growth Simulation.

Soumya K Ghosh, Saptarshi Pal

From our experiences in the past, we have seen that the growth of cities is very much dependent on the transportation networks. In mega cities, transportation networks determine to a significant extent as to where the people will move and houses will be built. Hence, transportation network data is crucial to an urban growth prediction system. Existing works have used manually derived distance based features based on the road networks to build models on urban growth. But due to the non-generic and laborious nature of the manual feature engineering process, we can shift to End-to-End systems which do not rely on manual feature engineering. In this paper, we propose a method to integrate road network data to an existing Rule based End-to-End framework without manual feature engineering. Our method employs recurrent neural networks to represent road networks in a structured way such that it can be plugged into the previously proposed End-to-End framework. The proposed approach enhances the performance in terms of Figure of Merit, Producer's accuracy, User's accuracy and Overall accuracy of the existing Rule based End-to-End framework.

Publisher URL: http://arxiv.org/abs/1712.06778

DOI: arXiv:1712.06778v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.