5 years ago

Effect of Branching and Molecular Weight on Heterogeneous Catalytic Deuterium Exchange in Polyolefins

Effect of Branching and Molecular Weight on Heterogeneous Catalytic Deuterium Exchange in Polyolefins
Aaron P. R. Eberle, Frank S. Bates, Timothy P. Lodge, Carlos R. López-Barrón, Shuhui Kang, Yiming Zeng
Small-angle neutron scattering (SANS) is a powerful method for probing the structural properties of polymeric materials. Contrast between polymer chains can be obtained by labeling with deuterium, which provides an opportunity for analyzing individual chain behavior in bulk. A transition metal (Pt/Re)-catalyzed reaction in isooctane was used to exchange deuterium for hydrogen in various saturated hydrocarbon polymers, including a commercial polyethylene. We have investigated the role of two forms of molecular heterogeneity on the labeling reaction using narrow dispersity hydrogenated polybutadiene (hPBD) samples with controlled molecular weight and ethyl branch content (short chain branching). These materials were prepared by anionic polymerization, followed by catalytic hydrogenation. A monotonic increase of deuterium labeling from 65% to 84% was observed when molecular weight was increased from 4000 to 216 000. Increasing the molecular weight to 635 000, however, resulted in almost no exchange, which is possibly due to the existence of a lower critical solution temperature (LCST) in isooctane. A similar trend with molecular weight was found for an isotope-labeled commercial linear low-density polyethylene material with 2.5% butyl branches and molecular weight ranging between 1000 and 1 000 000. Variation of ethyl branches from 2 to 50 ethyl branches per 100 backbone carbons in hPBDs reduced the level of exchange from 78% to 34%, with deuterons preferentially entering the pendant methyl groups at higher levels of branching. The materials generated from this isotope exchange reaction proved to be viable materials for SANS, providing consistent single chain statistics through proper analysis strategies, which take into account the inhomogeneous distribution of deuterium along and among individual chains caused by partial labeling and the molecular weight dependence of exchange. These results suggest that for a given chain, isotope exchange occurs on the metal catalyst surface during relatively few adsorption steps.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01268

DOI: 10.1021/acs.macromol.7b01268

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.