3 years ago

Characterizing Real-space Topology in Rice-Mele Model by Thermodynamics.

Wanli Yang, Jia-Bin You

The thermodynamic quantities which are related to energy-level statistics are used to characterize the real-space topology of the Rice-Mele model. Through studying the energy spectrum of the model under different boundary conditions, we found that the non-normalizable wave function for the infinite domain is reduced to the edge state adhered to the boundary. For the finite domain with symmetric boundary condition, the critical point for the topological phase transition is equal to the inverse of the domain length. In contrast, the critical point is zero for the semi-infinite domain. Additionally, the symmetry of the energy spectrum is found to be sensitive to the boundary conditions of the Rice-Mele model, and the emergence of the edge states as well as the topological phase transition can be reflected in the thermodynamic properties. A potentially practical scheme is proposed for simulating the Rice-Mele model and detecting the relevant thermodynamic quantities in the context of Bose-Einstein condensate.

Publisher URL: http://arxiv.org/abs/1801.08051

DOI: arXiv:1801.08051v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.