5 years ago

Nano-patterned polyelectrolyte multilayers assembled using block copolymer templates: The combined effect of ionic strength and nano-confinement

Nano-patterned polyelectrolyte multilayers assembled using block copolymer templates: The combined effect of ionic strength and nano-confinement
Polyelectrolyte multilayers gain their importance from their applicability to a wide variety of functional building blocks. The ability to create these multilayers as laterally nano-patterned films, which has only been scarcely investigated so far, augments the functionality of the multilayer and makes it valuable for applications that require nanoscale features or periodic arrangement, such as photonic devices, catalytic surfaces, and biomedical applications. In this study we reveal how the lateral confinement imposed by block copolymer nano-domains in thin film templates affects the assembly of the deposited polyelectrolyte layers at different ionic strengths, and how the combined effects of nano-confinement and ionic strength dictate the final structure of the multilayer. These fundamental insights provide the basis for successful construction of nano-patterned, functional coatings.

Publisher URL: www.sciencedirect.com/science

DOI: S003238611730784X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.