3 years ago

Stability of the 2+2 fermionic system with point interactions.

Robert Seiringer, Thomas Moser

We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m_c \approx 0.58 such that the system is stable, i.e., the energy is bounded from below, for m \in [m_c, m_c^{-1}]. So far it was not known whether this 2+2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N+M system.

Publisher URL: http://arxiv.org/abs/1801.07925

DOI: arXiv:1801.07925v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.