5 years ago

Continuous Flow Synthesis of Polystyrene Nanoparticles via Emulsion Polymerization Stabilized by a Mixed Nonionic and Anionic Emulsifier

Continuous Flow Synthesis of Polystyrene Nanoparticles via Emulsion Polymerization Stabilized by a Mixed Nonionic and Anionic Emulsifier
Yangcheng Lu, Xiaojing Liu, Guangsheng Luo
Conducting emulsion polymerization in continuous flow mode for polymer nanoparticle synthesis has the potential to improve productivity and reliability but has to face the fact that the emulsion is difficult to remain stable without stirring. In this work, a mixed nonionic–anionic emulsifier TX-100/SDBS (4:1) was found to perform much better in stabilizing pre-emulsion than anionic emulsifier SDBS and then was exploited in the microflow system to achieve reliable operation, controllable conversion, and continuous synthesis of nanoparticles with uniform size (PDI < 0.09). The reaction temperature could be elevated to 95 °C, and the emulsifier concentration could be decreased to 8.515 mM. The average size of the nanoparticles was facilely adjusted from 52 to 92 nm by changing the emulsifier concentration.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02352

DOI: 10.1021/acs.iecr.7b02352

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.