3 years ago

Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf

Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf
Haijian Lin, Zhiming Zhang, Yuzhou Lan, Longxin Luo, Xiongwei Zhao, Yanhua Cao, Yaou Shen, Yiwei Jiang, Yajuan Liu, Guangtang Pan, Yuhua Li, Shibin Gao, Wenmei Wu
Accumulation of cadmium (Cd) in maize (Zea mays L.) poses a significant risk to human health as it is ingested via the food chain. A genome-wide association study (GWAS) was conducted in a population of 269 maize accessions with 43,737 single nucleotide polymorphisms (SNPs) to identify candidate genes and favorable alleles for controlling Cd accumulation in maize. When grown in contaminated soil, accessions varied significantly in leaf Cd concentration at both the seeding and maturing stages with phenotypic variation and the coefficient of variation all above 48%. The co-localized region between SYN27837 (147,034,650 bp) and SYN36598 (168,551,327 bp) on chromosome 2 was associated with leaf Cd under three soil conditions varying in Cd content in 2015 and 2016. The significant SNP (SYN25051) at position 161,275,547 could explained 27.1% of the phenotype variation. Through QTL mapping using the IBMSyn10 double haploid (DH) population, we validated the existence of a major QTL identified by GWAS; qLCd2 could explain the 39.8% average phenotype variation across the experiments. Expression of GRMZM2G175576 encoding a cadmium/zinc-transporting ATPase underlying the QTL was significantly increased in roots, stems and leaves of B73, a low Cd accumulation line in response to Cd stress. Our findings provide new insights into the genetic control of Cd accumulation and could aid rapid development of maize genotypes with low-Cd accumulation by manipulation of the favorable alleles.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.