3 years ago

Impact of higher order dispersion and nonlinearities on modulational instability in a dual-core optical fiber

Aparna A. Nair, M. Jayaraju, K. Porsezian


In this investigation, we examine theoretically modulational instability (MI) in a dual-core optical fiber with higher order dispersion as well as higher order nonlinear effects. For dual-core or multicore optical fiber the investigation of MI analysis extends with parameters like linear coupling coefficient and coupling coefficient dispersion using extended coupled nonlinear Schrödinger equation. We analyze the impact of these parameters on MI gain spectrum at anomalous and normal dispersion regime along with higher order parameters. Our results show that the combined effect of higher order dispersion like fourth order dispersion and nonlinear parameter like self-steepening effect due to cubic–quintic nonlinearity, stimulated Raman response which is inevitable for the study of ultrashort pulse propagation and generation of the soliton. The study reveals that the frequency selection of MI gain is primarily controlled by the dispersion parameters while nonlinear parameters restrict the intensity and bandwidth of the MI gain. Though most of the distinguishable effects are observed in anomalous dispersion regime due to the presence of higher order parameters decent gain is also visible in the normal dispersion regime.

Graphical abstract

Publisher URL: https://link.springer.com/article/0.1140/epjd/e2017-80437-6

DOI: 10.1140/epjd/e2017-80437-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.