3 years ago

Real-time interferometric diagnostics of rubidium plasma

A method of interferometric real-time diagnostics is developed and applied to rubidium plasma created by strong laser pulses in the femtosecond duration range at different initial rubidium vapor densities using a Michelson-type interferometer. A cosine fit with an exponentially decaying relative phase is applied to the obtained time-dependent interferometry signals to measure the density–length product of the created plasma and its recombination time constant. The presented technique may be applicable for real-time measurements of rubidium plasma dynamics in the AWAKE experiment at CERN, as well as for real-time diagnostics of plasmas created in different gaseous media and on surfaces of solid targets.

Publisher URL: www.sciencedirect.com/science

DOI: S016890021731358X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.