3 years ago

High-Spin Iron Imido Complexes Competent for C–H Bond Amination

High-Spin Iron Imido Complexes Competent for C–H Bond Amination
Matthew J. T. Wilding, Theodore A. Betley, Diana A. Iovan
Reduction of previously reported (ArL)FeCl with potassium graphite furnished a low-spin (S = 1/2) iron complex (ArL)Fe which features an intramolecular η6-arene interaction and can be utilized as an FeI synthon (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin). Treatment of (ArL)Fe with adamantyl azide or mesityl azide led to the formation of the high-spin (S = 5/2), three-coordinate imidos (ArL)Fe(NAd) and (ArL)Fe(NMes), respectively, as determined by EPR, zero-field 57Fe Mössbauer, magnetometry, and single crystal X-ray diffraction. The high-spin iron imidos are reactive with a variety of substrates: (ArL)Fe(NAd) reacts with azide yielding a ferrous tetrazido (ArL)Fe(κ2-N4Ad2), undergoes intermolecular nitrene transfer to phosphine, abstracts H atoms from weak C–H bonds (1,4-cyclohexadiene, 2,4,6-tBu3C6H2OH) to afford ferrous amido product (ArL)Fe(NHAd), and can mediate intermolecular C–H amination of toluene [PhCH3/PhCD3 kH/kD: 15.5(3); PhCH2D kH/kD: 11(1)]. The C–H bond functionalization reactivity is rationalized from a two-step mechanism wherein each step occurs via maximal energy and orbital overlap between the imido fragment and the C–H bond containing substrate.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06682

DOI: 10.1021/jacs.7b06682

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.