3 years ago

Quasi-Periodic Behavior of Mini-Disks in Binary Black Holes Approaching Merger.

Scott C. Noble, Manuela Campanelli, Vassilios Mewes, Julian H. Krolik, Dennis B. Bowen, Miguel Zilhao

We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks ("mini-disks") around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams' interaction with a nonlinear $m=1$ density feature, or "lump", at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency $0.74$ times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks' inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream's quasi-periodic modulation. The fluctuations in each mini-disk's mass are so large that as much as $75\%$ of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary's electromagnetic emission.

Publisher URL: http://arxiv.org/abs/1712.05451

DOI: arXiv:1712.05451v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.