5 years ago

Binding of Bacteria to Poly(N-isopropylacrylamide) Modified with Vancomycin: Comparison of Behavior of Linear and Highly Branched Polymers

Binding of Bacteria to Poly(N-isopropylacrylamide) Modified with Vancomycin: Comparison of Behavior of Linear and Highly Branched Polymers
Pavintorn Teratanatorn, Richard Hoskins, Stephen Rimmer, C. W. Ian Douglas, Joanna Shepherd, Thomas Swift
The behavior of a linear copolymer of N-isopropylacrylamide with pendant vancomycin functionality was compared to an analogous highly branched copolymer with vancomycin functionality at the chain ends. Highly branched poly(N-isopropylacrylamide) modified with vancomycin (HB-PNIPAM-van) was synthesized by functionalization of the HB-PNIPAM, prepared using reversible addition–fragmentation chain transfer polymerization. Linear PNIPAM with pendant vancomycin functionality (L-PNIPAM-van) was synthesized by functionalization of poly(N-isopropylacrylamide-co-vinyl benzoic acid). HB-PNIPAM-van aggregated S. aureus effectively, whereas the L-PNIPAM-van polymer did not. It was found that when the HB-PNIPAM-van was incubated with S. aureus the resultant phase transition provided an increase in the intensity of fluorescence of a solvatochromic dye, nile red, added to the system. In contrast, a significantly lower increase in fluorescence intensity was obtained when L-PNIPAM-van was incubated with S. aureus. These data showed that the degree of desolvation of HB-PNIPAM-van was much greater than the desolvation of the linear version. Using microcalorimetry, it was shown that there were no significant differences in the affinities of the polymer ligands for d-Ala-d-Ala and therefore differences in the interactions with bacteria were associated with changes in the probability of access of the polymer bound ligands to the d-Ala-d-Ala dipeptide. The data support the hypothesis that generation of polymer systems that respond to cellular targets, for applications such as cell targeting, detection of pathogens etc., requires the use of branched polymers with ligands situated at the chain ends.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00800

DOI: 10.1021/acs.biomac.7b00800

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.