3 years ago

Eigenvalue hypothesis for multi-strand braids.

Vivek Kumar Singh, A. Morozov, P. Ramadevi, An. Morozov, A. Sleptsov, A. Mironov, Saswati Dhara

Computing polynomial form of the colored HOMFLY-PT for non-arborescent knots obtained from three or more strand braids is still an open problem. One of the efficient methods suggested for the three-strand braids relies on the eigenvalue hypothesis which uses the Yang-Baxter equation to express the answer through the eigenvalues of the ${\cal R}$-matrix. In this paper, we generalize the hypothesis to higher number of strands in the braid where commuting relations of non-neighbouring $\mathcal{R}$ matrices are also incorporated. By solving these equations, we determine the explicit form for $\mathcal{R}$-matrices and the inclusive Racah matrices in terms of braiding eigenvalues (for matrices of size up to 6 by 6). For comparison, we briefly discuss the highest weight method for four-strand braids carrying fundamental and symmetric rank two $SU_q(N)$ representation. Specifically, we present all the inclusive Racah matrices for representation $[2]$ and compare with the matrices obtained from eigenvalue hypothesis.

Publisher URL: http://arxiv.org/abs/1711.10952

DOI: arXiv:1711.10952v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.