3 years ago

Double jump phase transition in a random soliton cellular automaton.

John Pike, Lionel Levine, Hanbaek Lyu

In this paper, we consider the soliton cellular automaton introduced in [Takahashi 1990] with a random initial configuration. We give multiple constructions of a Young diagram describing various statistics of the system in terms of familiar objects like birth-and-death chains and Galton-Watson forests. Using these ideas, we establish limit theorems showing that if the first $n$ boxes are occupied independently with probability $p\in(0,1)$, then the number of solitons is of order $n$ for all $p$, and the length of the longest soliton is of order $\log n$ for $p<1/2$, order $\sqrt{n}$ for $p=1/2$, and order $n$ for $p>1/2$. Additionally, we uncover a condensation phenomenon in the supercritical regime: For each fixed $j\geq 1$, the top $j$ soliton lengths have the same order as the longest for $p\leq 1/2$, whereas all but the longest have order at most $\log n$ for $p>1/2$. As an application, we obtain scaling limits for the lengths of the $k^{\text{th}}$ longest increasing and decreasing subsequences in a random stack-sortable permutation of length $n$ in terms of random walks and Brownian excursions.

Publisher URL: http://arxiv.org/abs/1706.05621

DOI: arXiv:1706.05621v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.