3 years ago

Kinetics of Light-Induced Intramolecular Energy Transfer in Different Conformational States of NADH

Kinetics of Light-Induced Intramolecular Energy Transfer in Different Conformational States of NADH
Géza I. Groma, Stefan Haacke, Jérémie Leonard, Thomas Roland, Zsuzsanna Heiner
When bound to a protein, the coenzyme NAD+/NADH typically exists in an extended conformation, while in aqueous solutions it can be characterized by an equilibrium of folded and unfolded structures. It was recognized long ago that in the folded conformation light absorption at the adenine ring initiates an effective energy transfer (ET) toward the nicotinamide group, but the mechanism of this process is still unexplored. Here we apply ultrafast transient absorption measurements on NADH combined with compartmental model analysis for following the kinetics of the ET. We find that the actual ET is extremely rapid (∼70 fs). The high rate can be well described by a Förster-type mechanism, promoted by both the special photophysical properties of adenine and the subnanometer inter-ring distance. The rapid ET creates a vibrationally hot excited state on nicotinamide, the vibrational and electronic relaxation of which is characterized by 1.7 and 650 ps, respectively.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04753

DOI: 10.1021/acs.jpcb.7b04753

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.