3 years ago

Al/Ti/Al phonon-mediated KIDs for UV-VIS light detection.

M. Calvo, J. Goupy, I. Colantoni, F. Bellini, M. Martinez, L. Minutolo, H.le Sueur, A. Cruciani, M. Vignati, A. D'Addabbo, N. Casali, A. Monfardini, L. Cardani, M.G. Castellano, S. Di Domizio, C. Cosmelli

The development of wide-area cryogenic light detectors with baseline energy resolution lower than 20 eV RMS is essential for next generation bolometric experiments searching for rare interactions. Indeed the simultaneous readout of the light and heat signals will enable background suppression through particle identification. Because of their excellent intrinsic energy resolution, as well as their well-established reproducibility, Kinetic Inductance Detectors (KIDs) are good candidates for the development of next generation light detectors. The CALDER project is investigating the potential of phonon-mediated KIDs. The first phase of the project allowed to reach a baseline resolution of 80 eV using a single KID made of aluminium on a 2x2 cm\tmrsup{$2$} silicon substrate acting as photon absorber. In this paper we present a new prototype detector implementing a trilayer aluminium-titanium-aluminium KID. Thanks to the superconducting proximity effect the baseline resolution improves down to 26 eV.

Publisher URL: http://arxiv.org/abs/1801.08403

DOI: arXiv:1801.08403v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.