3 years ago

Simulation of topological nodal-loop bands on a superconducting circuits chain.

Zheng-Yuan Xue, Dan-Wei Zhang, Feng-Lei Gu

Nodal-loop semimetal is one of the exotic gapless topological states of matter that are discovered recently. Here we propose an experimentally feasible scheme to simulate the three-dimensional topological nodal-loop semimetal bands in a one-dimensional circuit quantum electrodynamics lattice, by introducing two additional parameter dimensions. A unit-cell of the lattice consists of a transmissionline resonator coupled by a superconducting transmon qubit, and two of the dressed states in a unit-cell are used to simulate the spin-1/2 states of an electron. The neighboring transmission-line resonators are connected by a superconducting quantum interference device, and the effective hopping among them is induced by parametric coupling. Meanwhile, the two artificial dimensions are simulated by tunable Zeeman terms of the spins. The detection of the mimic nodal-loop bands is also discussed and is shown to be well within current technology. Therefore, our scheme provides a feasible way to explore nodal-loop semimetal bands and other topological bands of different spin-orbit coupling forms in this controllable artificial system.

Publisher URL: http://arxiv.org/abs/1801.08426

DOI: arXiv:1801.08426v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.