5 years ago

Comparative Study of Thermal Stability, Morphology, and Performance of All-Polymer, Fullerene–Polymer, and Ternary Blend Solar Cells Based on the Same Polymer Donor

Comparative Study of Thermal Stability, Morphology, and Performance of All-Polymer, Fullerene–Polymer, and Ternary Blend Solar Cells Based on the Same Polymer Donor
Taesu Kim, Wonho Lee, Joonhyeong Choi, Bumjoon J. Kim, Hyeong Jun Kim
We compared the thermal and morphological stability of all-polymer solar cells (all-PSCs) and fullerene-based PSCs (fullerene-PSCs) having the same polymer donor (PBDTTTPD), which provided comparable peak power conversion efficiencies (PCEs) of >6%. We observed a remarkable contrast in thermal stability dependent upon the acceptor composition in the active layer, with the performance of the fullerene-PSCs completely deteriorating after annealing for 5 h at 150 °C, whereas that of the all-PSCs remained stable even after annealing for 50 h at 150 °C. Pronounced phase separation was observed in the active layer of the fullerene-PSCs at two different length scales. In stark contrast, almost no morphological changes in the all-PSCs were observed, likely due to the low diffusion kinetics of the polymer acceptors. To develop a comprehensive understanding of the role of polymer acceptor on the thermal stability of devices, the morphology of ternary blend active layers composed of PBDTTTPD:polymer acceptor:fullerene acceptor with different fullerene contents was examined while annealing at 150 °C. The ternary blends showed two extreme trends of all-PSC- and fullerene-PSC-like behavior in thermal stability depending on the PCBM content. When included in the active layer as <30 wt % of the acceptor mixture, fullerene was well-dispersed in the amorphous portion of the donor/acceptor polymer blend under thermal stress and led to thermally stable devices with a higher PCE (7.12%) than both all-PSCs without fullerene (6.67%) and polymer–fullerene active layers without a polymeric acceptor (6.12%).

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b00834

DOI: 10.1021/acs.macromol.7b00834

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.