3 years ago

Preparation and characterization of Na 2 S-modified biochar for nickel removal

Yifan Zeng, Xiaolan Hu, Lina Liu, Li Long, Yingwen Xue


Biochar has good adsorption ability to various contaminants. In this work, peanut shell, corncob, cotton stalks, and crayfish shell were pyrolyzed under three temperatures (300, 450, 600 °C) to obtain biochars for the removal of Ni2+. The biochars were further modified with 2 mol/L Na2S solution. Characterization results showed that the specific surface area and total pore volume of the modified biochars increased substantially. Among all the adsorbents, the modified corncob biochar (450 °C) showed the best Ni2+ adsorption. The adsorption kinetics followed the Elovich model with an equilibrium time of 24 h. The maximum capacity of the modified biochar reached 15.40 mg/g. The adsorption process was affected by pH, temperature, and coexisting ions. Increasing pH (under 7) provided more adsorption sites which enhanced adsorption capacity. Experimental results also indicated that the main adsorption mechanism of Ni2+ was ion exchange. Findings from this work suggest that modified biochar can be used as an effective adsorbent for the removal of Ni2+ from wastewater.

Graphical abstract

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-1298-6

DOI: 10.1007/s11356-018-1298-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.