3 years ago

Efficient Iridium Catalysts for Base-Free Hydrogenation of Levulinic Acid

Efficient Iridium Catalysts for Base-Free Hydrogenation of Levulinic Acid
C. Bruneau, C. Fischmeister, T. Roisnel, S. Wang, V. Dorcet, H. Huang
The synthesis and characterization of new dicationic ruthenium and iridium complexes bearing a dipyridylamine ligand (dpa) are reported. These complexes display an unusual zwitterionic molecular structure in the solid state. The iridium complex [Cp*Ir(dpa)(OSO3)] (Ir1) was found to be very efficient in base-free hydrogenation of levulinic acid into γ-valerolactone (GVL). TONs as high as 174000 in hydrogenation have been obtained. We have demonstrated that reduction of LA into GVL by transfer hydrogenation with formic acid is in fact operating by hydrogenation fed by preliminary formic acid dehydrogenation. A mechanism based on the characterization and isolation of Ir–H complexes is proposed.

Publisher URL: http://dx.doi.org/10.1021/acs.organomet.7b00503

DOI: 10.1021/acs.organomet.7b00503

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.