5 years ago

A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells

A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells
Although the inverted perovskite solar cells (PeSCs) have many advantages such as simple device fabrication, high stability and small hysteresis, the efficiency of inverted mesoporous PeSCs are still lower than those of normal-structure. For developing inverted mesoporous perovskite solar cells and the future design of tandem devices, a p-type metal oxide with high surface area and good charge carrier mobility is of paramount importance. Here, we develop a bilayer structure of p-type Cu:NiOx nanoparticle-based mesoporous and Cu-doped NiOx blocking layers to achieve efficient charge collection at the NiOx/perovskite interface with minimized recombination loss. Our strategy enables the fabrication of centimeter-sized perovskite solar cells with a decent efficiency of 18.1%, significantly improved stability, and negligible hysteresis. The rational design of the p-type Cu-doped metal oxide bilayer provides an effective strategy for future development of inverted architecture based mesoporous solar cells.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517304846

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.