3 years ago

Negative allosteric modulation of alpha 5-containing GABA A receptors engenders antidepressant-like effects and selectively prevents age-associated hyperactivity in tau-depositing mice

Timothy M. Jones, Michael M. Poe, Jeffrey M. Witkin, Nina Z. Xu, Guanguan Li, Scott D. Gleason, Denise Morrow, Xia Li, James M. Cook, Md. Toufiqur Rahman, Mark Wakulchik, Marco Treven, Margot Ernst, Rok Cerne, Jeffrey M. Schkeryantz



Associated with frank neuropathology, patients with Alzheimer’s disease suffer from a host of neuropsychiatric symptoms that include depression, apathy, agitation, and aggression. Negative allosteric modulators (NAMs) of α5-containing GABAA receptors have been suggested to be a novel target for antidepressant action. We hypothesized that pharmacological modulation of this target would engender increased motivation in stressful environments.


We utilized electrophysiological recordings from Xenopus oocytes and behavioral measures in mice to address this hypothesis.


In the forced-swim assay in mice that detects antidepressant drugs, the α5β3γ2 GABAΑ receptor NAM, RY-080 produced a marked antidepressant phenotype. Another compound, PWZ-029, was characterized as an α5β3γ2 receptor NAM of lower intrinsic efficacy in electrophysiological studies in Xenopus oocytes. In contrast to RY-080, PWZ-029 was only moderately active in the forced-swim assay and the α5β3γ2 receptor antagonist, Xli-093, was not active at all. The effects of RY-080 were prevented by the non-selective benzodiazepine receptor antagonist flumazenil as well as by the selective ligands, PWZ-029 and Xli-093. These findings demonstrate that this effect of RY-080 is driven by negative allosteric modulation of α5βγ2 GABAA receptors. RY-080 was not active in the tail-suspension test. We also demonstrated a reduction in the age-dependent hyperactivity exhibited by transgenic mice that accumulate pathological tau (rTg4510 mice) by RY-080. The decrease in hyperactivity by RY-080 was selective for the hyperactivity of the rTg4510 mice since the locomotion of control strains of mice were not significantly affected by RY-080.


α5βγ2 GABAA receptor NAMs might function as a pharmacological treatment for mood, amotivational syndromes, and psychomotor agitation in patients with Alzheimer’s and other neurodegenerative disorders.

Publisher URL: https://link.springer.com/article/10.1007/s00213-018-4832-9

DOI: 10.1007/s00213-018-4832-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.