3 years ago

Exact separation of radial and angular correlation energies in two-electron atoms.

Raghunathan Ramakrishnan, Anjana R Kammath

Partitioning of helium atom's correlation energy into radial and angular contributions, although of fundamental interest, has eluded critical scrutiny. Conventionally, radial and angular correlation energies of helium atom are defined for its ground state as deviations, from Hartree--Fock and exact values, of the energy obtained using a purely radial wavefunction devoid of any explicit dependence on the interelectronic distance. Here, we show this rationale to spuriously associate the contribution from radial-angular coupling entirely to the angular part underestimating the radial one, thereby also incorrectly predict non-vanishing residual radial probability densities. We derive analytic matrix elements for the high precision Hylleraas basis set framework to seamlessly uncouple the angular correlation energy from its radial counterpart. The resulting formula agrees with numerical cubature yielding precise purely angular correlation energies for the ground as well as excited states. Our calculations indicate 60.2% of helium's correlation energy to arise from strictly radial interactions; when excluding the contribution from the radial-angular coupling, this value drops to 41.3%.

Publisher URL: http://arxiv.org/abs/1801.07286

DOI: arXiv:1801.07286v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.