3 years ago

Improved antireflection based on biomimetic nanostructures at material interface

Reducing light reflections on the surface of materials has important applications in many fields, such as solar cells, photodetectors, and optical sensors, etc. An effective method of decreasing reflection is using the anti-reflective coating with a gradient refractive index. In this study, we designed a nanostructure composed of optimized cone arrays on the flat thin film surface. The tapered nanostructure forms an anti-reflection layer. The effective refractive index of the anti-reflection layer changes smoothly with the depth so that the surface can efficiently reduce the reflection in a wide visible light range. Moreover, the reflection can also be modulated by adjusting the height and the period of the nanocones. Furthermore, there is an optimal wavelength at which the highest anti-reflection efficiency is achieved. The results here provide a theoretical guidance for the practical design of broadband anti-reflection nanostructures at the device surface.

Publisher URL: http://iopscience.iop.org/2040-8986/20/2/025104

DOI: 10.1088/2040-8986/aaa1ae

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.