3 years ago

The novel thermostable cellulose-degrading enzyme DtCel5H from Dictyoglomus thermophilum: crystallization and X-ray crystallographic analysis

The novel thermostable cellulose-degrading enzyme DtCel5H from Dictyoglomus thermophilum: crystallization and X-ray crystallographic analysis
Flavia Squeglia, Rita Berisio, Alessia Ruggiero
Cellulose-based products constitute the great majority of municipal waste, and applications of cellulases in the conversion of waste biomass to biofuels will be a key technology in future biorefineries. Currently, multi-enzymatic pre-treatment of biomass is a crucial step in making carbohydrates more accessible for subsequent fermentation. Using bioinformatics analysis, endo-β-(1,4)-glucanase from Dictyoglomus thermophilum (DtCel5H) was identified as a new member of glycosyl hydrolase family 5. The gene encoding DtCel5H was cloned and the recombinant protein was overexpressed for crystallization and biophysical studies. Here, it is shown that this enzyme is active on cellulose substrates and is highly thermostable. Crystals suitable for crystallographic investigations were also obtained in different crystallization conditions. In particular, ordered crystals of DtCel5H were obtained using either ammonium sulfate or polyethylene glycol (PEG) as a precipitant agent. The crystals obtained in the presence of ammonium sulfate belonged to space group P32, with unit-cell parameters a = 73.1, b = 73.1, 73.1, c = 127.8 Å, and diffracted to 1.5 Å resolution, whereas the second crystal form belonged to the orthorhombic space group P212121, with unit-cell parameters a = 49.3, b = 67.9, c = 103.7 Å, and diffracted to 1.6 Å resolution. The crystal structure was solved in both space groups using molecular-replacement methods. Structure–activity and structure–stability studies of DtCel5H will provide insights for the design of high-performance enzymes.In this study, a new endo-β-(1,4)-glucanase isolated from the thermophilic D. thermophilum, denoted DtCel5H, has been identified, produced and crystallized. In addition, it is shown that this enzyme possesses cellulose-degradation activity and is highly thermostable. Structural investigations of this new cellulase will offer the opportunity to design and develop enzymes with optimal biotechnological applications.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1107/S2053230X1701682X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.