3 years ago

Revisiting optical properties of MgB2 with a high-quality sample prepared by a HPCVD method

Won Nam Kang, Jae Hak Lee, Jungseek Hwang, Yu-Seong Seo
We investigated a high-quality MgB2 thin film with a thickness of ~1000 nm on an Al2O3 substrate using optical spectroscopy. We measured the reflectance spectra of the film at various temperatures both below, and above, the superconducting transition temperature, T c  40 K. An earlier study showed that when the sample surface is exposed to air the optical properties of the surface change immediately, however, the saturated change is negligibly small in the far-infrared region. The optical conductivity spectrum in the normal state shows two (narrow and broad) Drude modes, with the narrow Drude mode being dominant in the low frequency region below 1000 cm−1. Our study, which uses a good-quality sample, provides more reliable data on the optical properties of MgB2, in a similar spectral range. The optical data is analyzed further using an extended Drude model, and the electron-phonon spectral density function, α2F(ω), is extracted. The spectral density function α2F(ω) features two peaks: a small one near 114 cm−1, and a strong peak around the 550 cm−1 where the B-B bond stretching phonon exists. Our data in the superconducting state does not show the expected energy shift of the onset of scattering associated with the α2F(ω) peaks.

Publisher URL: https://www.nature.com/articles/s41598-017-09248-4

DOI: 10.1038/s41598-017-09248-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.