3 years ago

Multipole effects in the photoionization processes of Mg isoelectronic series with Z = 12–22

Hsin-Chang Chi, Gang Jiang, Long Jiang, Keh-Ning Huang

Abstract

In this paper, we calculate relativistic photoionization parameters for Mg and Mg-like ions for photon energies between 10 eV and 30 keV using Dirac–Fock initial discrete-state wave functions and final central-field continuum wave functions. By taking multipole contributions into account, we achieve results that are in good agreement with both experimental data and theoretical results for neutral Mg atoms, and are within 5% of the experimental data for photon energies above 1 keV. We also find that, in relativistic photoionization calculations, the magnetic quadrupole transition tends to be more important than the magnetic dipole transition. The effect of multipoles is studied in detail by considering the contribution of the electric dipole transition to the full multipole calculation.

Graphical abstract

Publisher URL: https://link.springer.com/article/0.1140/epjd/e2017-80652-1

DOI: 10.1140/epjd/e2017-80652-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.