4 years ago

Fabrication of Redox-Responsive Degradable Capsule Particles by a Shell-Selective Photoinduced Cross-Linking Approach from Spherical Polymer Particles

Fabrication of Redox-Responsive Degradable Capsule Particles by a Shell-Selective Photoinduced Cross-Linking Approach from Spherical Polymer Particles
Yukiya Kitayama, Toshifumi Takeuchi
In this study, a fabrication route towards functional capsule particles was successfully developed by means of a self-templating shell-selective cross-linking strategy that enables us to prepare shell-cross-linked hollow polymer particles directly from homogeneous spherical polymer particles. To prepare redox-responsive degradable capsule particles, a newly designed monomer bearing a photoinduced post-cross-linking group (cinnamoyl group) and a redox-environment-responsive cleavable group (disulfide group), N-cinnamoyl-N′-methyacryloylcystamine (MCC), was synthesized. Redox-responsive degradable capsule particles were successfully prepared from homogeneous spherical poly(MCC)-based particles by a self-templating shell-selective photoinduced cross-linking approach. Moreover, the cargo loading capability of the shell-cross-linked hollow particles was confirmed through a solvent exchange procedure using dyes, polymer precursors and anticancer reagents. Furthermore, redox-responsive degradability of the capsule polymer particles was also confirmed by adding a reducing agent for cleavage of the disulfide linkage. We hope that the efficient fabrication route of functional capsule particles directly from spherical polymer particles opens efficient routes for the fabrication of a wide range of capsule particles; in particular, this technique is robust, productive, and facile because neither additional sacrificial template particles nor toxic solvents are required. Encapsulating! The synthesis of redox-responsive, degradable capsule particles was carried out from homogeneous spherical polymer particles using the self-templating shell-selective cross-linking methodology. By means of a solvent exchange process dye molecules, polymer precursors, and antitumor reagents were successfully encapsulated (see figure).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201702367

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.