5 years ago

Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries

Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries
We introduce a novel approach for the high-value production of nano/micro hierarchical structured Sn anodes for lithium-ion batteries (LIBs) by utilizing microalgal biomass residues that collaterally form during oil extraction for biofuel production. The Sn/C composites made from the oil-extracted microalgal biomass residues (the extracted Sn/C) exhibit the following advantages as high-energy-density anodes: 1) a homogeneous distribution of Sn nanoparticles in the carbon matrix (Sn/C), which efficiently relieves the strain caused by volume changes of the active materials; 2) a high porosity of Sn/C composites; and 3) a homogeneous distribution of the hetero elements N and P in the carbon matrix. Overall, the extracted Sn/C exhibit improved electrochemical performance in LIBs compared with the Sn/C composites made from the microalgal biomass residues without oil extraction (non-extracted Sn/C). The extracted Sn/C have improved rate capabilities (160.0 and 72.9mAhg−1 for the extracted Sn/C and the non-extracted Sn/C, respectively, at the 80th cycle, 3.5Ag−1) and improved cycle performances (511.7 and 493.2mAhg−1 for the extracted Sn/C and the non-extracted Sn/C, respectively, at the 300th cycle, 200mAg−1).

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617316845

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.