Modulation of sensory information processing by a neuroglobin in Caenorhabditis elegans [Neuroscience]
![Modulation of sensory information processing by a neuroglobin in Caenorhabditis elegans [Neuroscience]](/image/eyJ1cmkiOiJodHRwOi8vd3d3LnBuYXMub3JnL2NvbnRlbnQvZWFybHkvMjAxNy8wNS8yMi8xNjE0NTk2MTE0L0YxLm1lZGl1bS5naWYiLCJmb3JtYXQiOiJ3ZWJwIiwicXVhbGl0eSI6MTAwLCJub0NhY2hlIjp0cnVlfQ==.webp)
Sensory receptor neurons match their dynamic range to ecologically relevant stimulus intensities. How this tuning is achieved is poorly understood in most receptors. The roundworm Caenorhabditis elegans avoids 21% O2 and hypoxia and prefers intermediate O2 concentrations. We show how this O2 preference is sculpted by the antagonistic action of a neuroglobin and an O2-binding soluble guanylate cyclase. These putative molecular O2 sensors confer a sigmoidal O2 response curve in the URX neurons that has highest slope between 15 and 19% O2 and approaches saturation when O2 reaches 21%. In the absence of the neuroglobin, the response curve is shifted to lower O2 values and approaches saturation at 14% O2. In behavioral terms, neuroglobin signaling broadens the O2 preference of Caenorhabditis elegans while maintaining avoidance of 21% O2. A computational model of aerotaxis suggests the relationship between GLB-5–modulated URX responses and reversal behavior is sufficient to broaden O2 preference. In summary, we show that a neuroglobin can shift neural information coding leading to altered behavior. Antagonistically acting molecular sensors may represent a common mechanism to sharpen tuning of sensory neurons.
Publisher URL: http://feedproxy.google.com/~r/Pnas-RssFeedOfEarlyEditionArticles/~3/zNx6LKULU2c/1614596114.short
DOI: 10.1073/pnas.1614596114
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.