3 years ago

Self-bound droplets of light with orbital angular momentum.

Kali E. Wilson, Callum W. Duncan, Ewan M. Wright, Patrik Öhberg, Niclas Westerberg, Manuel Valiente, Daniele Faccio

Systems with competing attractive and repulsive interactions have a tendency to condense into droplets. This is the case for water in a sink, liquid helium and dipolar atomic gases. Here, we consider a photon fluid which is formed in the transverse plane of a monochromatic laser beam propagating in an attractive (focusing) nonlocal nonlinear medium. In this setting we demonstrate the formation of the optical analogue of matter wave droplets, and study their properties. The system we consider admits droplets that carry orbital angular momentum. We find bound states possessing liquid-like properties, such as bulk pressure and compressibility. Interestingly, these droplets of light, as opposed to optical vortices, form due to the competition between s-wave (monopole) and d-wave (quadrupole) interactions.

Publisher URL: http://arxiv.org/abs/1801.08539

DOI: arXiv:1801.08539v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.